CREATE FUNCTION, CREATE PROCEDURE

Functions and Procedures can be written in your Orixa App, they can contain the full features of the
SQL2003 syntax.

Functions run SQL script and return a value. They are most usually used to return data which is used in a
GENERATED column in a table, or in data returned in a report or dashboard.

Procedures run code and do not return a value. They are most commonly used to perform data-
management regular tasks.

This guide cannot cover the full details of how to write Functions and Procedures, as this is a huge topic. The purpose of this page is to give basic
guidence and some useful examples.

Get up and running: Copy from existing procedures

Your Orixa App will contain many functions and procedures. If you have Administrator priviledges you can access the DB Management Utility and
view these. Take some time to study these, they show all the basic SQL syntax issues and possibilities of Functions and Procedures.

i Fles ~ & actons ~ D Hep ~ " Li; System Information - | /7 SQL Editor In the DB Management Utility Access all existing Functions and
0 Orixa Database Treeview
..... |4 pata
-7 Business Objects
-] Framework Tables

[l ol e o)
Em—-EH e oo

Procedures

Functions Pprocedures

1. Click on the "Functions/Procedures" item
under either the "Data" database or the

= . ContractltemsSumBilled
----- > Functions/Procedures ConfractVATExempt

CustomerVATExempt "SystemDB" item.
FinancialYearStartDate
FormatDate . .
IDListToText 2. In the System Information tab, you will see
..... 5 - MaxDate . .
& Euncions(Brosediires MoneyFormat lists of the Functions and Procedures on

-0 VIews MiceDate

.. 5 Configuration-Tables NiceDateRange your system.
----- |4/ Other Databases g'lcgﬂmesmmp
OrgCode
CriginalAuthor
ProductCarriesVAT
ProductPrice
Softwarekey
StatusID
TableExists
TableLastCreateDate
TableRowCount
ThisUserEndID
ThisUserStartiD
TimeSincelastUpdate
TrimLR.SpacesCommas
TypelD

TypelDList
TypeValue

D

WI_SumHours
YearMonth
YearWeek

----- [4 systemDB
i Tabla

Viewing example Functions and Procedures

15 TreeView || Scheduler (] Daiy Activity €3 DB Utiiity =3 Download Emais el .
T —y——) Click on any Function or Procedure and it's SQL Definition will

d for “Data”

display.

Functions procedures $Qi, Definition.
1 FUNCTION “CalenderYearStart™ ()
= — You can copy and paste SQL from this window to use elsewhere in

5 SET Result = CAST(CAST(EXTRACT(Year FROM Current_Date) AS VARCHAR(4))
€ + '-01-01 80:00° AS TIMESTAWP) ;
7 END

rStartDa
FormatDate
IDListTaText

your Orixa system.

8

MaxDate
MoneyFormat
NiceDate
NiceDateRange:
NiceTimeStamp
o

OrgCode
Original Author

ProductCarmiesVAT
ProductPrice

Softwarekey

Function example SQL

Some basic Aspects of the Syntax of Functions and Procedures

1. They can accept parameters which can be input, output or both input and output. Parameters are
values of data. Input parameters accept data from the user, output parameters are returned as the result
of a procedure. All functions return a result which is a special kind of output parameter.

2. Within functions and procedures a wide range of new SQL keywords are used, which will be unfamiliar to
Developers who have mainly written SELECT statements. The

3. The developer can create a cursor using SQL statement, if this statement is a SELECT statment, once open

3. the developer can iterate through it and operate on the data. If the statement is an UPDATE or INSERT,
the developer can write code to pass in parameters.

4. The developer can declare variables at the start of the SQL which can hold values to use in the script.
5. SQL syntax ends lines with the semi-colon character (;).

6. Strings start and end with single quotes ('), and can cross multiple lines. If the string statement contains a
single quote this must be doubled, as shown in examples below. If the developer wants to combine
strings with variables or parameters the plus sign (+) can be used for concatenation, with a single quote
before and afterwards, as shown in examples below.

7. Basic programming constructs like if, while, case all work in similar ways to the way they work in other
programming languages.

Some Syntax with Examples and Explanations

DECLARING VARIABLES Variables can be declared with any data-type (identical to the
DECLARE Crsr CURSOR FOR Stnt data-types used in field definitions).

DECLARE St nt 2 STATEMENT; The specialized variables CURSOR and STATEMENT. Can be used
DECLARE i Count er | NTEGER; for data manipulation.

DECLARE sNanme VARCHAR(100);

DECLARE Resul t DECI MAL(19, 4) When a cursor is declared it is always associated with a statement

which will be used to query the database.

An example Cursor declaration is shown on the left.

OPENING STATEMENTS The example to the left shows a simple statement being prepared,

PREPARE Stnt FROM and opened.

' SELECT Note the use of the "?" character to represent a holder position for
SUMBi | | edval ue) as SunBill ed a parameter in the statement.

FROM Contractltens
WHERE Contract PaynmentsliD = ? ';
OPEN Crsr USI NG al b;

In the example the "alD" keyword may refer to a variable declared
earlier in the procedure, or a parameter passed in by the caller of
the procedure.

[sone other lines of code ...]

CLCSE Crsr; Once the Cursor has been opened it becomes available in the
procedure and values from the returned records can be used in
code.

'
USING AND USING CURSORS The key processes that need to be understood to use Cursors are

the keywords

FETCH FIRST FROM CursorName('FieldName') INTO VariableName.

OPEN Crsr USI NG al D;

FETCH FI RST FROM Crsr (' Authorl D) | NTO

Resul t ; Note that the FieldName is enclosed in single quotes, and more

RETURN Resul t; than one FieldName and VariableName can be contained in
comma-separated lists.

OPEN Crsr USI NG al D Once values have been extra.cted from the cu.rs.or, it is common to
| F ROMCOUNT(Crsr) = 0 THEN use the WHILE statement to iterate the remaining rows.
CLCSE Crsr; WHILE NOT EOF(CursorName) DO
ELSE | F . ; - .
FETCH FI RST FROM Grsr (' 1D) | NTO al D E(?F is sh'ort for Fnd Of File ,-meanlng that the subsequent c?de
. will continue until all records in the cursor have been dealt with.
[sonme other lines of code ...]
VWHI LE NOT ECF(Crsr) DO
[sonme other lines of code ...]
FETCH NEXT FROM Crsr('1D) |INTO al D;
END WHI LE;

END | F;

USING EXECUTE IMMEDIATE The EXECUTE IMMEDIATE keywords do exactly what you would

EXECUTE | MVEDI ATE expect. Thsy aIIc;w‘? SO:.L Sta.tebTent;.o:? r:;adle ar;d immediately
' DELETE FROM Or gani sat i ons run. Nt:)te ow the "alD varla. er,]w ich is dec arehasi afn'INTEfER
WHERE 1D = ' + CAST(alD as VARCHAR): must be CAST to a VARCHAR in the statement on the left in order

for the statement to parse correctly.

INPUT AND OUTPUT PARAMETERS The statement on the left shows a procedure which declares three
CREATE PROCEDURE " DoSonet hi ng” (IN "al D' input parameters. Note the syntax:
| NTEGER, | N "aFi el dname" VARCHAR, IN IN "ParameterName" DATA-TYPE.

"aMast er Tabl e" VARCHAR
) [Parameter Type] [ParameterName] [DataType]

The Parameter Type can be "IN", "OUT" or "INOUT"

