
CREATE FUNCTION, CREATE PROCEDURE

Functions and Procedures can be written in your Orixa App, they can contain the full features of the
SQL2003 syntax.
Functions run SQL script and return a value. They are most usually used to return data which is used in a
GENERATED column in a table, or in data returned in a report or dashboard.
Procedures run code and do not return a value. They are most commonly used to perform data-
management regular tasks.

This guide cannot cover the full details of how to write Functions and Procedures, as this is a huge topic. The purpose of this page is to give basic
guidence and some useful examples.

Get up and running: Copy from existing procedures
Your Orixa App will contain many functions and procedures. If you have Administrator priviledges you can access the DB Management Utility and
view these. Take some time to study these, they show all the basic SQL syntax issues and possibilities of Functions and Procedures.

Viewing example Functions and Procedures

In the DB Management Utility Access all existing Functions and
Procedures

1. Click on the "Functions/Procedures" item
under either the "Data" database or the
"SystemDB" item.

2. In the System Information tab, you will see
lists of the Functions and Procedures on
your system.

Function example SQL

Click on any Function or Procedure and it's SQL Definition will
display.

You can copy and paste SQL from this window to use elsewhere in
your Orixa system.

Some basic Aspects of the Syntax of Functions and Procedures
1. They can accept parameters which can be input, output or both input and output. Parameters are

values of data. Input parameters accept data from the user, output parameters are returned as the result
of a procedure. All functions return a result which is a special kind of output parameter.

2. Within functions and procedures a wide range of new SQL keywords are used, which will be unfamiliar to
Developers who have mainly written SELECT statements. The

3. The developer can create a cursor using SQL statement, if this statement is a SELECT statment, once open

3. the developer can iterate through it and operate on the data. If the statement is an UPDATE or INSERT,
the developer can write code to pass in parameters.

4. The developer can declare variables at the start of the SQL which can hold values to use in the script.

5. SQL syntax ends lines with the semi-colon character (;).

6. Strings start and end with single quotes ('), and can cross multiple lines. If the string statement contains a
single quote this must be doubled, as shown in examples below. If the developer wants to combine
strings with variables or parameters the plus sign (+) can be used for concatenation, with a single quote
before and afterwards, as shown in examples below.

7. Basic programming constructs like if, while, case all work in similar ways to the way they work in other
programming languages.

Some Syntax with Examples and Explanations

DECLARING VARIABLES

DECLARE Crsr CURSOR FOR Stmt;

DECLARE Stmt2 STATEMENT;

DECLARE iCounter INTEGER;

DECLARE sName VARCHAR(100);

DECLARE Result DECIMAL(19,4);

Variables can be declared with any data-type (identical to the
data-types used in field definitions).

The specialized variables CURSOR and STATEMENT. Can be used
for data manipulation.

When a cursor is declared it is always associated with a statement
which will be used to query the database.

An example Cursor declaration is shown on the left.

OPENING STATEMENTS

PREPARE Stmt FROM

' SELECT

 SUM(BilledValue) as SumBilled

 FROM ContractItems

 WHERE ContractPaymentsID = ? ';

OPEN Crsr USING aID;

[some other lines of code ...]

CLOSE Crsr;

The example to the left shows a simple statement being prepared,
and opened.

Note the use of the "?" character to represent a holder position for
a parameter in the statement.

In the example the "aID" keyword may refer to a variable declared
earlier in the procedure, or a parameter passed in by the caller of
the procedure.

Once the Cursor has been opened it becomes available in the
procedure and values from the returned records can be used in
code.

USING AND USING CURSORS

OPEN Crsr USING aID;

FETCH FIRST FROM Crsr('AuthorID') INTO

Result;

RETURN Result;

OPEN Crsr USING aID;

IF ROWCOUNT(Crsr) = 0 THEN

 CLOSE Crsr;

 ELSE IF

 FETCH FIRST FROM Crsr('ID') INTO aID;

 [some other lines of code ...]

 WHILE NOT EOF(Crsr) DO

 [some other lines of code ...]

 FETCH NEXT FROM Crsr('ID') INTO aID;

 END WHILE;

 END IF;

The key processes that need to be understood to use Cursors are
the keywords
FETCH FIRST FROM CursorName('FieldName') INTO VariableName.

Note that the FieldName is enclosed in single quotes, and more
than one FieldName and VariableName can be contained in
comma-separated lists.

Once values have been extracted from the cursor, it is common to
use the WHILE statement to iterate the remaining rows.

WHILE NOT EOF(CursorName) DO

EOF is short for "End Of File", meaning that the subsequent code
will continue until all records in the cursor have been dealt with.

USING EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

 ' DELETE FROM Organisations

 WHERE ID = ' + CAST(aID as VARCHAR);

The EXECUTE IMMEDIATE keywords do exactly what you would
expect. They allow a SQL Statement to be made and immediately
run. Note how the "aID" variable, which is declared as an INTEGER
must be CAST to a VARCHAR in the statement on the left in order
for the statement to parse correctly.

INPUT AND OUTPUT PARAMETERS

CREATE PROCEDURE "DoSomething" (IN "aID"

INTEGER, IN "aFieldname" VARCHAR, IN

"aMasterTable" VARCHAR)

The statement on the left shows a procedure which declares three
input parameters. Note the syntax:

IN "ParameterName" DATA-TYPE.

[Parameter Type] [ParameterName] [DataType]

The Parameter Type can be "IN", "OUT" or "INOUT"

